TECHNICAL REPORT

A Signature-Based Approach to System Identification and Prediction of
Controlled Dynamical Systems

Vladislav Snytko
Maastricht University
vvs.snytko@gmail.com
v.snytko@student .maastrichtuniversity.nl

Supervisor: George Stepaniants

October 18, 2025

1 Introduction

Control theory concerns the problem of selecting input trajectories for a system to drive its
output toward desired values, with the ultimate goal of being able to control any nonlinear
dynamical system. In practice, however, the equations governing a system’s dynamics are
often unknown, and the only available information consists of data — samples of inputs and
their corresponding outputs. The necessity of obtaining a representation of a system before
controlling it lies at the heart of the system identification component of the twofold control task.
In this report, we present our results on exploring a novel signature-based method for system
identification and, ultimately, for the control of dynamical systems.
An autonomous controlled dynamical system can be expressed as

&(t) = f(x(t), u(t)) (1)

where z(t) € R™, u(t) € R", f: R™ x R™ — R™ and are all, generally, nonlinear functions. The
method we are about to present requires the system to be control-affine, meaning that f should
be linear in inputs u(t). This is not a significant limitation, since Equation (1) can be rewritten
in the control-affine form through coordinate lifting & = (z,u), @ = (%, 1) resulting in the system

i= [f@] = [O"Xm f@)] i := F(%)a. (2)

u Imxm 0m><1

Now, the signature S,) (u) of a trajectory u is an operator that returns an infinite series
of numbers S[(;lé]""zk)(u) for all 1 < 4y,...,ix < m and k > 0 given by the iterated integrals

(Fermanian et al. [2021])

(isit) () / . / iy (1) « gy (b) b - .. . 3)
@ a<tp<b a<t1<ts
Formally, the signature is represented as follows

Staw () = (1,80 (), ..., S (u), Sy (w), ..., SEe™ (w), ... (4)

What is interesting for our discussion is that the signature can be used to write out the solution
for the Equation (1) (Fermanian et al. [2021]), where it accepts the control trajectory and
combines with coefficients dependent on x(

x<t>:wo+Z% S Sy) - Fy ke Fy(wo), U = /0 u(r)dr (5)
k=1

T 1<i i <n

where x denotes differential product

frg=> 0ig-fi (6)

=1

In practice we should use a finite expansion, so we reserve S[Icf b] (u) to denote truncated se-

ries Equation (4) where the last term is S{;Z]("), K xn=(n,...,n), where n is copied K times.

With this we can write out the model succinctly

(t) = Sf,4(U)G k(o) (7)
LKL WK
where S[lgt](U) € R"» T and Gg : R™ — R =1 “™ is a stacked vector of differential
products.

Integrated Control Trajectory Signature Terms Solutions

0.0
0.2 54
-0.2
0.1
1.
T —0.4 = 0.0 £
=1 tn oA
~0.6 —0.11
-1
_0.2.
-0.8 1 5 g
! ! ! ! ! 034 ! ! ! : ! I I I ! I I
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

t t t

Figure 1: Example solution for Duffing oscillator and corresponding signature terms

The model we present is worth studying because it possesses several advantages, which
we outline below. First, it is straightforward to interpret: one can directly observe the
feature trajectories (signature terms) that are combined to produce predictions, and the exact
function that computes them, Equation (4), is explicitly known. An example solution for the
Duffing oscillator and the corresponding signature terms are given in Figure 1. This level of
interpretability stands in contrast to the common approach in dynamical systems of training
a neural network that maps inputs directly to outputs (see Lewis et al. [1998] and Perrusquia
and Yu [2021]). Such models are typically black boxes, as the transformations applied to the
inputs during the forward pass are not transparent. Second, the signature transform model
is expressive enough to represent any dynamical system, unlike, for instance, Spectral State
Space Models (see Agarwal et al. [2024]), which require additional architectural complexities to
capture nonlinear dynamics. Third, the signature provides a simpler nonlinear transformation
than that used in other predictive methods, such as reservoir computing (see te Vrugt [2024]),
since it admits a closed-form expression for S[I(i t](U).

The aim of this report is to (i) summarize the methodology and experiments, and (ii) provide
a record of the results for future reference. All experiments were implemented in Python, and
the complete source code is publicly available online! .

2 Methodology

2.1 Signature Representation

We represent each control trajectory u(t) through its truncated signature expansion S[IO(t](U),

where U(t) = [Ju(r)dr. The signature terms serve as the building blocks of the predictive
model. The signatures are computed with signaz library in Python (Tong [2022]). The default
K =5, if not mentioned otherwise.

2.2 Coefficient Matrix

The solution is modeled as a linear combination of signature terms with coefficients determined
by a matrix A(z¢), which depends on the initial condition .

2.3 Error metric

Error metric between target trajectories and predictions that we are going to use in the rest of
the report is Normalized Root Mean Square Error (NRMSE), which is normalized by the range
of the target trajectory

Yicolyi — i)

E(y,) = 100 * l(maz(§) — min(3))

(8)

"https://github.com/kurolesica0211/signature-based-prediction

https://github.com/kurolesica0211/signature-based-prediction

where 3, € RX™ are predicted and target trajectories correspondingly with [as the number of
samples and m dimensionality of the state.

2.4 Linear Regression Baseline

To validate the feasibility of the approach, we implemented a linear regression model to learn
A(xg) for a fixed z¢ across multiple control trajectories. The objective is to observe a decrease
in the test error as the number of trajectories used in the regression increases. Such a decrease
would indicate the convergence of the coefficients A toward values that accurately model the
dynamics for different input trajectories.

2.5 Neural Network Extension

Building on this, we trained a feedforward neural network to predict A(zg) directly from zy. The
predicted coefficients were then combined with the signature trajectories to generate a prediction
of the solution, thereby completing the system identification and prediction pipeline.

2.6 Dynamical Systems and Control Generation

All the results in the report are tested on two dynamical systems. The first is a cubic polynomial
system
i(t) = x(t)uy (t) + 23 (t)ua(t). (9)

In control-affine form it can be written as follows

= 1
i(t) = [« xuﬂLm@] (10)
The control trajectories u(t) = [u1(t),u2(t)]? generated for that system were largely negative
and scaled down by 1000 to avoid blowing up solutions and allow for more interesting dynamics
rather than simple fast convergence to zero. The second system is controlled Duffing oscillator

i+ 0k + ax + B = u(t) (11)

where o = —1.0, 8 = 1.0 and § = 0.3. The control-affine form is

a(t)| _ y(t) ol [1
[wwl‘{www—adw—ﬁﬁ@>1lbuﬁ 12)

The input trajectories for both systems were generated as sums of {cos((t) and Esin((t) with
¢ and ¢ drawn from normal distribution.

3 Experiments and Results

3.1 Linear Regression Validation

Here, we describe the experimental setup and the results of the linear regression. For both systems,
the dataset consisted of 80 different initial conditions sampled from a uniform distribution over
the interval [—5; 5], and 160 distinct control trajectories, 2 trajectories for each example of zg.
The dataset was split evenly into training and test sets, each containing 1600 input—output
pairs. Note that the training and test sets shared the same 80 initial conditions; only the input
trajectories differed. The control signals were sampled over the interval [0; 1] with A¢ = 0.01 for
the polynomial system, and over [0;0.5] with the same step size for the Duffing oscillator. The

Error vs Number of Training Trajectories 103 Error vs Number of Training Trajectories

—&— Mean Error —&— Mean Error
+1 Standard Deviation ‘ +1 Standard Deviation
102 4 102 5 |
w R
) wi
1 1
E 10 2 10
z o
=z
100 4 10° -
107 L | | | | 107 L - il | |
0 20 40 60 80 0 20 40 60 80
Number of Training Trajectories Number of Training Trajectories
(a) Cubic polynomial system (b) Duffing oscillator

Figure 2: Error against the number of training trajectories

resulting solutions were integrated using a fifth-order Runge-Kutta solver. Then we performed
linear regression for A(zg) from

S@t}(U;) 21(1)

$2
S[O’ﬂz(U) A(zo) = :(t) (13)
SE L (U7) (1)

where ¢ is the number of different control trajectories used in the regression. The obtained
coefficients A(zg) were used on the test set for the corresponding initial conditions and the
average NRMSE error across state dimension and all xg’s was calculated. The plot of logig
of the mean errors for increasing number of input trajectories used in the regression is given
in Figure 2. As expected from the theory, the error decreases, because the coefficients A(x)
generalize to such that can model dynamics in combination with multiple control trajectories.
This result confirms that in principle we are able to do system identification and prediction
through the signature transform model.

3.2 Neural Network Training

Using linear regression, we demonstrated that it is possible to learn the function A(x). Building
on this result, we are now ready to train a neural network that maps any initial condition to
the corresponding coefficient matrix for a given system — not only those zg values seen during
training, as in the case of linear regression. This completes the prediction method based on
the signature transform model: given any zy and wu(t), one can predict x(t) using the known
signature transform and the coefficient mapping A(zg).

In practice, however, direct learning of this mapping often fails to produce satisfactory
results, as the model’s approximation error tends to increase over time (Scampicchio and
Zeilinger [2024]). This makes long-horizon prediction challenging and hinders the ability to learn
a stable approximation of A(xp). To enable reliable long-term predictions while still learning
the mapping, we trained the neural network on a sequence of short-term predictions. The
process works as follows: start from the initial condition z(of the target trajectory; generate
a short-term prediction of the output; then take the last predicted point as the new xy and
repeat the procedure. By concatenating these short-term predictions, a long-term trajectory
can be reconstructed and compared to the target. This approach also makes the neural network
more robust if one wishes to extend the prediction chain beyond the time horizon used during
training.

10° 4

Training and Test Losses

—— Training Loss
—— Test Loss

T T T T
10000 15000 20000 25000
Training iteration

T T
0 5000

Training and Test Losses

—— Training Loss
—— Test Loss

Loss

103

102 4

10! 4

10° 4

107!

NRMSE Training and Test Losses, %

Histogram of the NRMSE test losses

—— NRMSE training loss
—— NRMSE test loss

T T T T
1000 1500 2000 2500

Epoch

T T
0 500

(a) Cubic polynomial system

10°

NRMSE Training and Test Losses, %

100

|
80I
60I

20

Qnt

—— NRMSE training loss
—— NRMSE test loss

600

500

Loss

107t 4 200

400 I
£ a0l |
S 300 I

100

T T T T
1000 1500 2000 2500 0 10 20 30 40 50 60

Epoch

(b) Duffing oscillator

T T T T T T 1 T T
0 10000 20000 30000 40000 50000 0 500

Training iteration

Figure 3: Summary of training the neural networks

We now move to the specifics of the implementation. We employ feedforward neural networks
K+1

n —1
n—1

that take zop € R™ as input and output vec(4) € R™

K+1_
A(zg) € Rnni—llxm. Since obtaining the true coefficients from the differential products, as
defined in Equation (5), would require explicit knowledge of the system’s governing equations—
which is rarely feasible in practice—we do not train the network on target coefficient values.
Instead, we train it based on how well each predicted coefficient matrix reproduces the solution
for a given control trajectory. Our loss function used in training for both systems is Root Mean
Square Error (RMSE) normalized by standard deviation of the target solution and given by

, which is then reshaped into

S oy — 0i)?
Eizo(yz‘ - My)z

Along with the loss we track the RMSE normalized by the range as given previously. Speaking
about the network architectures, the network for the polynomial system consists of 5 linear layers
with constant hidden size 256 each followed by the GELU activation function. The network for
the Duffing oscillator consists of 6 such linear-GELU layers of the same constant hidden size
with an addition of LayerNorm before the output layer. LayerNorm ensures that the outputs
do not scale arbitrarily large when the network is at early stages of training, the problem that
was absent when training for the polynomial system. The output layers in both networks were
initialized at O to start the training from a reasonably bounded loss value.

The dataset for the polynomial system consists of 500 training examples (input—output pairs)
and an equal number of test examples, sampled from the time interval [0; 10] with At = 0.01.
For the Duffing oscillator, larger training and test sets of 1000 examples each were used, sampled
from a shorter time interval [0;5] with the same At, as the neural network for this system
proved more difficult to train. For both systems, the sampled trajectories were divided into
10 segments each to enable chaining of short-term predictions, as described previously. An
important implementation detail is that for the Duffing oscillator, we whitened the matrix of
stacked signature trajectories so that all eigenvectors corresponded to the same eigenvalues.
Additionally, we applied global per-feature rescaling: for each signature feature, the average
norm across the entire training set was computed, and each feature was subsequently divided by
its corresponding average norm.

l :
Liy.) = = St (14)

The training in both cases was done in batches of 50 examples with Adam optimizer and
linear schedule of the learning rate, from 3 * 10~% down to 1079 at the end of the training for
the polynomial system, and from 10~2 to 10~* for the Duffing oscillator.

The results of training are shown in Figure 3. The first image in a row shows how logig
of the internal neural network loss given in Equation (14) progresses with the number of
training iterations (one epoch corresponds to 20 training iterations), the second image features
the dynamics of the NRMSE error against the number of epochs, and the third images gives
histogram of the amount of test trajectories against NRMSE errors in the end of the training.
For the polynomial system the training finishes with the average NRMSE error of 0.51 on test
set, the Duffing oscillator network reaches 1.98 on the same metric. We consider NRMSE error
around 1.0 on test set a success.

4 Discussion

We have demonstrated that the signature transform model is a promising tool for system
identification and prediction, and this result paves the way for further research. First, it is now
possible to explore the control of dynamical systems using this model. The approach provides
a relatively straightforward formulation of the open-loop control problem, which reduces to
applying an appropriate optimization method to determine U from Equation (5). Closed-loop
control can then be implemented using the Model Predictive Control framework.

Another important direction for future work is reducing the scaling of the model size. In
its standard formulation, the dimensionality of the signature grows exponentially with K, the
parameter governing the accuracy of the approximation in Equation (5). Consequently, the
model quickly becomes computationally infeasible even for small K, leaving limited room for
improving performance once the neural network’s capacity is reached. This makes it valuable to
search for reformulations of the model that can improve its scaling properties.

As a long-term goal, it would also be of great interest to identify other models that factorize
the influence of the initial conditions and control on a system’s dynamics. Such models combine
high interpretability with relatively low computational cost for both training and inference.

5 Conclusion

In conclusion, we have shown that despite its novelty the signature-based approach to dynamics
prediction is highly promising, deserving further research to mitigate its drawbacks and explore
its control capabilities.

Code Availability

The repository containing the implementation and experimental scripts is available at:
https://github.com/kurolesica0211/signature-based-prediction.

References

Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, and Gérard Biau. Framing rnn as a
kernel method: A neural ode approach. Advances in Neural Information Processing Systems,
34:3121-3134, 2021.

F. W. Lewis, S. Jagannathan, and A. Yesildirak. Neural Network Control of Robot Manipulators
and Non-Linear Systems. CRC Press, 1st edition, 1998. doi: 10.1201/9781003062714. URL
https://doi.org/10.1201/9781003062714.

https://github.com/kurolesica0211/signature-based-prediction
https://doi.org/10.1201/9781003062714

Adolfo Perrusquia and Wen Yu. Identification and optimal control of nonlinear systems using
recurrent neural networks and reinforcement learning: An overview. Neurocomputing, 438:
145-154, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.01.096. URL
https://www.sciencedirect.com/science/article/pii/S0925231221001788.

Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models, 2024.
URL https://arxiv.org/abs/2312.06837.

Michael te Vrugt. An introduction to reservoir computing, 2024. URL https://arxiv.org/
abs/2412.13212.

Anh Tong. signax, 2022. URL https://github.com/anh-tong/signax.

Anna Scampicchio and Melanie N Zeilinger. Data-driven control of input-affine systems: the
role of the signature transform. arXiv preprint arXiv:2409.05685, 2024.

https://www.sciencedirect.com/science/article/pii/S0925231221001788
https://arxiv.org/abs/2312.06837
https://arxiv.org/abs/2412.13212
https://arxiv.org/abs/2412.13212
https://github.com/anh-tong/signax

	Introduction
	Methodology
	Signature Representation
	Coefficient Matrix
	Error metric
	Linear Regression Baseline
	Neural Network Extension
	Dynamical Systems and Control Generation

	Experiments and Results
	Linear Regression Validation
	Neural Network Training

	Discussion
	Conclusion

