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Abstract—Data-driven techniques have become indispensable
for analyzing nonlinear and chaotic dynamical systems, where
traditional models fall short. In this work, we build upon the
HAVOK (Hankel Alternative View of Koopman) framework to
improve the analysis and prediction of such systems. We derive
an upper bound on the truncation rank in HAVOK analysis
by leveraging the exponential decay structure of singular values
in chaotic systems, filling a gap in the literature where no
robust systematic approach to rank selection previously existed.
Additionally, we introduce a method to significantly reduce the
amount of measurement data required for accurate HAVOK
reconstruction, addressing the practical bottleneck of HAVOK’s
relatively high computational cost and the absence of existing
acceleration techniques. Finally, we test the power of singular
vectors to predict rare events in chaotic systems, such as lobe
switching in the Lorenz attractor, exploiting increases in activity
of SVD coordinates as a sign of an impending event. Together,
these contributions pave the way for future promising research
on data-driven methods in the study of chaotic dynamics.

I. INTRODUCTION

In an era defined by vast data availability and powerful
machine learning tools, data-driven approaches to dynamical
systems are becoming indispensable for analyzing, predicting,
and controlling complex phenomena, especially when tradi-
tional models are either oversimplified or unavailable. These
methods are proving invaluable across fields as varied as
weather forecasting, ecological modeling, economics, neuro-
science, and materials science [1].

A dynamical system is typically described by differential
(continuous-time) or difference (discrete-time) equations that
govern the evolution of its state over time. Within this broad
class, nonlinear systems—where the system’s evolution is
governed by nonlinear equations—are notoriously challenging
[3].

Among the most striking phenomena in nonlinear systems
is chaos. The term chaos in the context of dynamical systems
does not imply randomness, but rather deterministic unpre-
dictability. In a chaotic system, the governing equations are
fully deterministic, yet even infinitesimally small differences
in initial conditions can lead to wildly divergent outcomes
over time — a property known as sensitive dependence on
initial conditions. As Lorenz famously observed in his 1963
study of atmospheric convection, this sensitivity limits long-
term predictability and gives rise to what is popularly known
as the ”butterfly effect” [2] [4].

A more formal definition of chaotic systems often comes
from [5]:

• Sensitivity to initial conditions: Small perturbations grow
exponentially, quantified by positive Lyapunov exponents.

• Topological mixing: Trajectories spread across the attrac-
tor, ensuring that any open set eventually overlaps with
any other.

• Dense periodic orbits: Every neighborhood in phase space
contains periodic points.

Classic examples of chaotic systems include the Lorenz
system [4], the Rössler attractor [6], the double pendulum,
and certain maps such as the logistic map [7].

Because nonlinear and chaotic systems resist analytical
solutions, researchers have turned to empirical, data-driven
methods:

• Delay-coordinate embedding [8] allows reconstruction of
phase-space trajectories from scalar time series.

• Nonlinear forecasting techniques [9] differentiate chaotic
signals from noise and enable short-term forecasting.

• Sparse regression methods, such as SINDy [10], identify
parsimonious governing equations directly from data.

• Machine learning frameworks [11] have enabled learning
dynamics and correcting unknown model terms while
embedding physical knowledge.

A notable spot in the data-driven study of chaotic dy-
namics has recently been occupied by a model realization
technique called Hankel Alternative View of Koopman (HA-
VOK) analysis, developed in [12]. HAVOK does Singular
Value Decomposition (SVD) of a Hankel matrix of a system’s
trajectory to identify a new coordinate basis advantageous due
to the dynamics being approximately linear in these new SVD
coordinates.

Building on the work in [12], we present several useful
results, specifically:

• Bound on Truncation Rank in HAVOK Analysis: We
found how the well-known exponential structure in the
distribution of singular values of chaotic dynamical sys-
tems can be applied to compute a top bound on truncation
rank used in HAVOK analysis. There are no existing
methods for choosing the truncation rank, and the one
mentioned in the original HAVOK paper, the method
from [16], does not yield consistent results, although



sometimes it is capable of identifying a rank that produces
an accurate reconstruction. Thus, the heuristic we present
here is an important contribution.

• Minimization of Dataset Requirements for HAVOK Re-
construction: We present a method to drastically reduce
the amount of data required to perform HAVOK analysis
retaining the same truncation rank. Keeping in mind that
HAVOK analysis may take a prolonged time to run on a
large amount of data, establishing a method to speed up
the computations is a desirable result.

• Prediction of Rare Events With SVD: we elaborate on
an SVD-based approach to predict rare events in chaotic
dynamical systems (such as the lobe switching in Lorenz
attractor), first presented in [12]. The method seems
promising and able to take its own spot in the corpus
of approaches to the prediction of nonlinear dynamics,
although it certainly requires further investigation to fully
evaluate its capabilities.

II. BACKGROUND

In this section we recall a number of concepts which will
be important further in the paper. Specifically, Singular Value
Decomposition is at the core of the whole work, being used in
all of the results we present. HAVOK analysis is the technique
we improve with our results in sections III and IV. The
concepts of the Hankel matrix and the time-delay embedding
are important for understanding the HAVOK method, so we
also explain them here.

A. Singular Value Decomposition

Assume M is an m × n real or complex matrix. Then
Singular Value Decomposition is a factorization of M of the
form:

M = USVT , (1)

where U and V are square orthogonal matrices and S is
a rectangular diagonal matrix. The values in S are sorted
in decreasing order. Throughout the paper we will be using
compact SVD, a variant of SVD which retains only non-
zero columns and rows in S, hence also deletes the orphaned
columns and rows of the other two matrices. We also assume
throught the paper that m < n, and thus S and U are
everywhere square matrices m×m, and V is an n×m matrix.
The compact SVD factorization is illustrated in Figure 1. The
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Fig. 1: Illustration of the SVD M = USV ⊤. Columns of U
(in red) form the basis, diagonal entries of S (in blue) are the
singular values, and rows of V ⊤ (in green) give the coordinates
for U S.

figure pictures the matrices U,S, and VT from left to right
correspondingly, highlighting columns of U in red, singular
values in blue, and rows of VT in green. This triple–the red
column, the blue value, and the green row–also forms a rank-1
SVD mode. The sum of these rank-1 modes equals the original
decomposed matrix.

As Figure 1 suggests, in our context it is better to interpret
SVD as a factorization producing an orthogonal basis US for
column vectors in M (assuming m ≤ n) with coordinates
given by columns of VT .

B. Hankel Matrices

A Hankel matrix is a rectangular matrix where the elements
in all antidiagonals are equal. Formally, Hi,j = hi+j−2,
∀(i, j) ∈ (1, ...,m)× (1, ..., n), as is visualized in Figure 2.

H =


h0 h1 h2 · · · hn−1

h1 h2 h3 · · · hn

h2 h3 h4 · · · hn+1

...
...

...
. . .

...
hm−1 hm hm+1 · · · hm+n−2


Fig. 2: Illustration of the structure of a Hankel matrix. Note the
constant antidiagonals and the fact that consecutive columns
are time-shifted copies of each other.

C. Time-delay Embedding and SVD Coordinates

Time-delay embedding is a well-known approach to aug-
menting the state of a system by adding state history, leveraged
for state-space reconstruction [17], signal denoising [18], and
time-series forecasting [19]. Specifically, if X(t) ∈ R is the
state of the system at time t, then X̂(t) = [x(t − τ(d −
1)), x(t− τ(d− 2)), . . . , x(t)] is the embedded state with the
embedding dimension d and time-shift τ . An important result
concerning this technique is Takens’ delay embedding theorem
[8], which states that under certain conditions the attractor in
the delay embedded coordinates X̂(t) is diffeomorphic to the
original attractor in X(t). When discretely sampled, the states
X(t) can be augmented to obtain a Hankel matrix. Performing
SVD on the Hankel matrix will result in the translation of the
state vectors into the new basis with rows of V giving SVD
coordinates, the attractor on which is still diffeomorphic to the
original one.

D. HAVOK Analysis

Hankel Alternative View of Koopman (HAVOK) analysis is
a technique for data-driven realization of a chaotic dynamical
system. The main feature of the HAVOK analysis is that
the model that one computes with this method decomposes
chaotic dynamics into linear and nonlinear parts. It is linked
to the Koopman operator, because the linear part of the model
approximates the operator in finite-dimensional space [12]. We
recall how the HAVOK method proceeds in Algorithm 1.



Algorithm 1 HAVOK Algorithm

Require: A time series x(t), sampling time ts, embedding
dimension d, and truncation rank r

1: Collect measurements x(t) at consecutive time steps with
the sampling time ts

2: Form the Hankel matrix H using embedding dimension d
3: Perform singular value decomposition: H = USVT

4: Truncate U,S,V to rank r: obtain Ur,Sr,Vr

5: Let V := Vr; numerically compute time derivatives of
rows v1, . . . , vr−1 to get matrix V′

6: Compute linear dynamics matrix: A = (V′)TV† where
V† is the pseudoinverse of V

7: Extract the r-th column of A and denote it as B
8: Remove the r-th row of A to obtain the reduced matrix

Ared
9: Define v(t) = (v1, v2, . . . , vr−1)

T

10: return The HAVOK model:
d

dt
v(t) = Aredv(t) +Bvr(t) (2)

III. BOUND ON TRUNCATION RANK IN HAVOK ANALYSIS

In HAVOK analysis, we are required to truncate matrices
obtained with SVD at a truncation rank r. This step is both
necessary and desirable. First, as we will see, due to noise,
HAVOK do not reconstruct the original dynamics well at
every r ∈ {1, . . . , d}, because some singular vectors are
too undescriptive (again, often due to noise) of the nonlinear
dynamics of the system.

Second, it is sometimes necessary to reduce the amount
of data one processes through HAVOK, and SVD provides
an optimal way to do it. According to the Eckart–Young
theorem, the rank-r truncation of SVD provides the best low-
rank approximation of the original matrix.

In this section we present a way to find an upper bound on
r in cases when the measurements are primarily contaminated
with finite-variance white noise. We start by presenting the
structure in the distribution of singular values in chaotic
dynamical systems contaminated with white noise, and we
continue by showing how we can use this structure to obtain
an upper bound on the truncation rank. We limit our discussion
to the Lorenz system, but, as will be shown at the end of the
section, we tested the results on multiple chaotic systems. Here
is the configuration of the Lorenz system:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(3)

The system was integrated from t0 = 0 to t1 = 50 with σ =
10, ρ = 28, β = 8

3 , and initial conditions [x(0), y(0), z(0)] =
[1, 1, 1]. The sampling time is ts = 0.001.
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Fig. 3: Log of singular values for different embedding dimen-
sions (number of rows in a Hankel matrix). The distribution
starts with exponential decay, which abruptly stops after a
certain value on the z-axis.

A. Distribution of Singular Values

The distribution of the singular values of the Lorenz system
is shown in Figure 3. The plot demonstrates the logarithm
of base 10 of the singular values of Hankel matrices of
different dimensions, constructed out of the x coordinate of
the Lorenz system integrated with the parameters as stated
above. The x-axis on the plot is the embedding dimension,
the number of rows of a Hankel matrix, and the y-axis is
the index of a singular value in the order they are located
in the matrix S. As can be seen, the plot can be divided
into two parts: the exponential region and the flat region.
The exponential region corresponds to the singular values
being exponentially distributed, a feature that we observed
in many chaotic systems. The flat region is the noise floor
as was mentioned in [13], which was one of the first works
studying this structure. Also, following [14], for convenience
of the discussion, we call the number of singular values in the
linear region as statistical dimension. Note that although the
statistical dimension increases with the matrix dimension, the
threshold that separates the two parts remains almost the same
regardless of the matrix dimension (σthreshold ≈ 10−10.2).

The linear region is termed the noise floor because its
existence is a direct consequence of the presence of the noise
in a signal. It is empirically demonstrated in Figure 4. The
plot shows singular value distributions for different standard
deviations (σ) of white noise added to the signal (x-coordinate
of the Lorenz system) before constructing the Hankel matrix.

The interaction between the level of noise and the statistical
dimension can be shown theoretically. First, let’s assume that
we measure a process h(t) = y(t) + w(t), where y(t) is the
true signal we attempt to record and w(t) is the white noise.
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Fig. 4: Singular values for different levels of noise of a Hankel
matrix with d = 100. The noise moves the linear region up
and down, thus justifying the term ”noise floor”.

After collecting n data points of h(t) we arrange them in
an m × n − m + 1 Hankel matrix H = Y + W. Recall
that the singular values of a matrix H are the square roots of
eigenvalues from the following problem:

HHTui = λiui (4)

u vectors here form the U matrix in the SVD. Let’s expand
the matrix H:

HHTui = λiui

(Y +W)(Y +W)Tui = λiui

(Y +W)(YT +WT )ui = λiui

(YYT +YWT +WYT +WWT )ui = λiui

(5)

Since the white noise is uncorrelated, it follows that
WWT = Σ, where Σij = δijnσ

2 (δij being Kronecker delta
here).

(YYT +YWT +WYT +Σ)ui = λiui (6)

Note that YWT ≈ 0 and WYT ≈ 0, because the expected
inner product between the rows xi and wi with i ∈ {1, . . . ,m}
equals to 0,

E(xT
i wi) = E(

n−m+1∑
j=1

xijwij) =

n−m+1∑
j=1

xijE(wij) =

n−m+1∑
j=1

xij0,

(7)

since wij ∼ N (0, σ2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Index

L
og

10
(S

ta
nd

ar
d

D
ev

ia
tio

n
of

no
is

y
co

m
po

ne
nt

s)

σ = 10-1

σ = 10-2

σ = 10-3

σ = 10-4

σ = 10-5

σ = 10-6

σ = 10-7

σ = 10-8

σ = 10-9

σ = 10-10

σ = 10-11

σ = 10-12

σ = 10-13

σ = 10-14

σ = 10-15

Fig. 5: Logarithm of standard deviations of ”noisy” compo-
nents for different standard deviations of additive Gaussian
noise. As can be seen, there is almost a perfect match between
these two values from 10−1 to 10−13.

Let’s return to 6. From 7 it follows that

(YYT +YWT +WYT +Σ)ui ≈ (YYT +Σ)ui

(YYT +Σ)ui ≈ λiui

YYTui + nσ2ui ≈ λiui

YYTui ≈ (λi − nσ2)ui

(8)

Thus Sij ≈ δij
√
λ̃i + nσ2, where λ̃i = λi−nσ2 are the

√
λ̃i

singular values of the matrix Y constructed out of the ”true”
measurements.

From Figure 4 we can induce that in case the noise, either
coming from finite-precision arithmetic during integration or
from imperfection of measurement tools, is absent from the
signal, there is no noise floor. In a continuous setting, this
result was proven in [14].

An interesting observation was made that we can infer the
standard deviation of the noise from the statistical dimension.
Figure 5 shows that the standard deviation of noisy SVD
components aligns well with the standard deviation of the
noise added to the signal. Noisy components are those that
correspond to the singular values in the flat region. The
discrepancy between the values observed at the bottom of the
figure can be explained by the fact that there is an integration
noise in the time series, which presumably has a standard
deviation around 10−14. The procedure to obtain the standard
deviation of the noisy components is given in Algorithm 2.



Algorithm 2 Noise Estimation via SVD and Hankelization

Require: Signal x (time series or structured data)
Ensure: Estimated noise standard deviation σnoise

1: Construct the Hankel matrix H from the signal x
2: Perform singular value decomposition: H = UΣVT

3: Plot log10 σi versus i and identify the bending point k
4: Reconstruct the noise subspace: Hnoise =

∑r
i=k+1 σiuiv

T
i

5: Dehankelize Hnoise to recover noise component x̃noise
6: Compute the standard deviation: σnoise = std(x̃noise)
7: return Estimated noise level σnoise

The observation in Figure 5 aligns with the theory of
Singular Spectrum Analysis (SSA). According to SSA, under
certain conditions, when we apply SVD to a Hankel matrix
constructed from the sum of two time series, the resulting
rank-1 SVD components can be approximately separated into
two groups. Each group corresponds to one of the original
time series — one representing the original trajectory and the
other representing the added time series [15]. The separability,
as this property is called in SSA, requires the Hankel matrices
of the two time series to span approximately orthogonal
column and row spaces, which is essentially the case if the
added signal is white noise, as we have shown previously. As
presented at the end of the section, the same result holds for
several other chaotic dynamical systems.

B. Interrelation between Statistical Dimension and HAVOK
Accuracy

In the previous subsection we demonstrated the way to
evaluate the influence of noise on the singular values of a
chaotic dynamical system. Assuming now we can predict the
singular values for different levels of white noise in a signal,
and thus predict the statistical dimension, we proceed with
showing a simple heuristic with which you can obtain an upper
bound on the truncation rank in HAVOK analysis. This is
straightforward—the upper bound is the statistical dimension
of a system.

Figure 6 pictures errors of attractor reconstruction through
HAVOK for different Hankel matrix dimensions d and trun-
cation ranks r. This is the view from above on the Figure
3, but with the points colored according to the error of the
reconstruction. The error is calculated as follows:

E =

∑n
i=1(xi − yi)

2∑n
i=1 x

2
i

, (9)

where x is the original time series and y is the reconstructed
one.

The HAVOK reconstruction is computed with the algorithm
defined in Algorithm 3.
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Fig. 6: HAVOK reconstruction errors for different embedding
dimensions for the Lorenz system. The red curve highlights
singular values after which the noise floor starts. It is clear
from the figure that the indices of these singular values are
also the largest ones that can be used as truncation ranks.

Algorithm 3 HAVOK Reconstruction

Require: Signal x (time series)
1: Fit HAVOK model using Algorithm 1
2: Integrate the equation 2 you get: obtain states

(v̄1[t], v̄2[t], . . . v̄r−1[t]) for t values from the time
span of x

3: Construct a Hankel matrix V̄T out of the states you
obtained in the previous step

4: Transform V̄T back to the original coordinates: H̄ =
USV̄T , where U and S come from the HAVOK model

5: Dehankelize H̄ to obtain the reconstructed time series x̄
6: return The reconstructed time series x̄

The red line in 6 marks the statistical dimension of the
matrices. The figure clearly shows correspondence between the
statistical dimension and the error of HAVOK reconstruction,
which can be explained by the fact that, as was mentioned
previously, SVD is capable of, at least approximately, sep-
arating a contaminated signal into the ”true” signal and the
noise. Keeping in mind our previous results, this is likely
what happens. The SVD modes corresponding to the singular
values larger than the statistical dimension are dominated by
noise, and thus are not able to serve as the forcing for the
HAVOK model. This gives us a clear heuristic for choosing
the truncation rank: the range of acceptable (in terms of the
HAVOK reconstruction) truncation ranks is bounded from the
above by the statistical dimension of the Hankel matrix.

The Figure 7 presents the results from the section for dif-
ferent dynamical systems: Duffing oscillator, Rossler system,
and Rikitake system.
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(a) Singular values for Duffing oscillator
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(b) Noise estimation for Duffing oscillator
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(c) Error pattern for Duffing oscillator
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(d) Singular values for Rossler system
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(e) Noise estimation for Rossler system
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(f) Error pattern for Rossler system
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(g) Singular values for Rikitake system
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(h) Noise estimation for Rikitake system
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Fig. 7: Summary of results for Duffing, Rossler, and Rikitake systems.
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Fig. 8: Singular value distributions for time series with points that are multiples of 1, 4, 6 skipped. Although we leave out
points from the time series, the statistical dimension remains the same, 33.

IV. REDUCTION OF DATASET REQUIREMENTS FOR
HAVOK RECONSTRUCTION

In this section we show a method to reduce the size of the
time series for the HAVOK analysis retaining the statistical
dimension of the Hankel matrix. The method is simple and
borrows the idea from [13].

The approach we present only requires changes to an orig-
inal time series and thus a Hankel matrix you construct from
it. Specifically, before proceeding with the SVD in HAVOK,
you first run Algorithm 4, which constructs an ”undersampled”
Hankel matrix from your original time series in a specific way:
it keeps the same time span of columns of the Hankel matrix
as it was originally regardless of the undersampling step k
which you choose. After running the algorithm, you continue
with the usual HAVOK steps.

Algorithm 4 Construction of Undersampled Hankel Matrix
for HAVOK
Require: Signal x = [x1, . . . , xN ], sampling interval ts,

undersampling step k, window size m
1: Undersample the signal: x̂ = (x[t0], x[t0 + kts], x[t0 +

2kts], . . . )
2: Preserve the total time window: T̃ ← m · ts
3: Compute number of rows: m̃←

⌊
T̃

kts

⌋
4: Initialize Hankel matrix Hsub with dimensions m̃× n
5: for i = 1 to m̃ do
6: for j = 1 to n do
7: Hsub(i, j)← x̃i+j−1

8: end for
9: end for

10: return Hsub

And although after running the algorithm the matrix with
which you worked has apparently changed, the statistical
dimension remained the same, as illustrated by Figure 8. These
plots show singular value distributions for Hankel matrices

constructed from the x-coordinate of the Lorenz system using
Algorithm 4 with m = 300 and ts = 0.001. The k values
there are 1, 4, and 6. As can be seen, the statistical dimension
remains the same.

This gives us the method of speeding up HAVOK recon-
struction while retaining the same truncation rank (Algorithm
5), assuming the truncation rank you use is smaller than the
statistical dimension, as recommended in the previous section.

Algorithm 5 Accelerate HAVOK through Undersampling

Require: Signal x (time series)
1: Obtain the undersampled Hankel matrix Hsub with 4
2: Follow the Algorithm 1 from step 3 using Hsub
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Fig. 9: Summary of HAVOK errors with undersampling for
the four systems.
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Fig. 10: Illustration of the predictive behavior of singular vectors. A singular vector v15 is in blue, the x-coordinate of the
Lorenz system is in green, and the red lines mark the times when the lobe switches in the Lorenz system occur. The lobe
switches consistently happen after some period of unusual activity in the singular vectors.

Figure 9 shows the errors of HAVOK reconstruction with
the undersampling for the Lorenz system, Duffing oscillator,
Rossler systems, and Rikitake system. As can be seen, the
error almost everywhere stays below 10−3, which we consider
to be a threshold for a reconstruction almost without visual
discrepancies with an original time series. And this small error
persists even for the cases when we left out up to 87.5% of
data. Skipping so many of the data points obviously speeds
up the computations.

V. PREDICTION OF RARE EVENTS WITH SVD

In [12], along with the HAVOK model, it was mentioned
that the singular vectors are predictive, because, as was ob-
served, singular vectors that correspond to sufficiently high
ranks systematically exhibit an increase in activity shortly
before a rare event, like lobe-switching in the Lorenz system,
starts. We study the prediction power of the singular vectors
closely.

Figure 10 features singular vector v15 from t0 = 10 to
t1 = 40 of the Lorenz system integrated with the param-
eters from Section III. The singular vectors, though, were
obtained differently. To ensure that the singular vectors are
not computed with the knowledge of the whole time series,
the SVD computation was done progressively, meaning that
we started with a small initial time series and consecutively
added more points, each time computing the singular vectors
of the Hankel matrix we get and storing the new state vector
v̂(t) = (v1[t], . . . , v100[t]). The red lines on the plot mark lobe
switches occurring in the x-coordinate of the system. A lobe
switch is defined as a point where the x-coordinate crosses its
mean. In the figure we consistently see an increase in activity
of the v15 vector before these events.

To quantify the predictive activity in singular vectors and
study the predictive power, we decided to compute percentiles

TABLE I: Prediction Results for Lorenz system

Metric Value
Total events 105
Total triggers 115
Predicted events 96 (Recall = 91.43%)
Successful triggers 96 (Precision = 83.48%)
F1 Score 0.87
Time Lag Statistics
Mean 0.49 sec
Standard deviation 0.10 sec
Minimum 0.09 sec
Maximum 0.61 sec

of v15 in a running window of points and mark points where
the values are larger or smaller than certain predefined per-
centiles. Then the closely located marked points are collapsed
such that only the first point in a window is left. This is done
because once a singular vector crosses one of the percentiles
it continues to mark many ”false” predictions for some time
afterwards. So in this manner we computed the predictions
on the Lorenz system from t0 = 15 to t1 = 200 (the time
interval from 0 to 15 features the transient phase where no
lobe switches yet occur) with the window of 6000 points,
upper percentile equals to 95, lower percentile equals to 5,
and with the collapse window of 0.5 time units. The results
are summarized in Table I. The time lag part provides some
statistics on the distribution of the time lags between the
prediction and the events. The results in the table are very
promising, featuring both high precision and recall values,
even though we used a relatively simple metric for quantifying
the singular vector activity.

We also decided to evaluate the method on a wider range
of parameters to ensure our results are general and to identify
optimal values. The optimality we seek is in terms of F1 score,
which was chosen as a widespread measure that combines
recall and precision values into one value, balancing both.
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(a) Heatmap of F1 scores for Duffing oscillator
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(b) Heatmap of F1 scores for Rossler system
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(c) Heatmap of F1 scores for Rikitake system

Fig. 11: Heatmaps of F1 scores for different dynamical systems
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Fig. 12: Heatmap of F1 scores for Lorenz system. F1 scores
are color-coded. x-coordinate is the upper percentile, the y-
coordinate is the window size. The F1 score in general ranges
from 0 to 1, so the values close to 1 here indicate the strong
predictive ability of the method.

Since we want to evaluate how the method performs in general,
without a close look at either of those two measures, the F1
score is the kind of measure we need. Figure 12 presents the
F1 scores for different sizes of the running window and upper
percentiles (the lower percentile is calculated by subtracting
the upper one from 100). The figure shows that for a window
size large enough and the upper percentile around 95, the
method produces very strong results.

The Figure 11 presents the results from the section for dif-
ferent dynamical systems: Duffing oscillator, Rossler system,
and Rikitake system.

VI. DESCRIPTION OF THE TESTED SYSTEMS

The results in the paper were tested on four chaotic dy-
namical systems: the Lorenz system, the Duffing oscillator,
the Rossler system, Rikitake system. The Lorenz system is

already described in section III, here is the description of the
other three.

A. Duffing oscillator

dx

dt
= y

dy

dt
= γcos(ωt)− δy − αx− βx3

(10)

The equations were integrated with parameters δ = 0.15, α =
−1, β = 1, γ = 0.37, ω = 1.2, initial conditions x0 =
0.1, y0 = 0, on time interval [0; 1000] with sampling time
ts = 0.005. The HAVOK errors for undersampled time series
were computed for a fixed r = 10. In the prediction part, the
event which we tried to predict is a crossing of the mean by
x-coordinate. The trigger points were merged in the window
of 5 time units.

B. Rossler system

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c)

(11)

The equations were integrated with parameters a = 0.2, b =
0.2, c = 5.7, initial conditions x0 = 1, y0 = 1, z0 = 0, and
on time span [0; 1000] with sampling time ts = 0.005. The
HAVOK errors for undersampled time series were computed
for a fixed r = 10. The events that we aimed to predict are
the points where the z-coordinate crosses the threshold value
1. The trigger points were collapsed on the interval of 5 time
units.



C. Rikitake system

dx

dt
= −βx+ zy

dy

dt
= βy + (z − α)x

dz

dt
= 1− xy

(12)

The equations were integrated with parameters α = 4, β =
0.98, initial conditions x0 = 1, y0 = 0, z0 = 0, and on time
span [0; 1000] with sampling time ts = 0.005. The HAVOK
errors for undersampled time series were computed for a fixed
r = 18. In the prediction part, the event that we tried to predict
is a crossing of the mean by the x-coordinate. The trigger
points were collapsed on the interval of 5 time units.

VII. SUMMARY

To summarize, in the paper we have shown the methods for
improving the HAVOK analysis by applying the heuristic to
meaningfully choose the truncation rank (section III) and the
method to drastically reduce the size of the data meant to be
processed through HAVOK (section III).

We also demonstrated very promising lines of future re-
search, specifically the noise estimation method (section III),
which can be further developed as a fully separate technique
with applications in signal processing and time series analysis,
and the rare event prediction technique (section V), which,
even for the simple activity quantification method we chose
here, shows that it is highly capable of short-term prediction.

The paper also poses an interesting and, at least in this
context, important theoretical question about what determines
the shape of the singular value distribution. Knowing more
about the distribution and its causes will probably allow us to
generalize the HAVOK enhancing methods we presented here
to chaotic dynamical systems whose distributions might not
follow the exponential-flat structure we discussed here.

We conclude the paper with a list of questions that can be
further investigated from this point:

• What determines the distribution of singular values and
how is it connected to noise in a signal?

• How can we generalize the truncation bound heuristic
to the dynamical systems where the distribution of the
singular values will not follow the discussed pattern?

• How can we generalize the noise estimation technique to
these systems?

• How noise influences the distribution of singular values?
• What will be the influence of colored noise (and many

other types of noise) on the distribution and how the
methods from the paper can be generalized to account
for this?

• What determines whether singular vectors will show the
predictive behavior?

• How can we better quantify this behavior to improve the
method?

• How this method compares to other techniques for rare
event prediction?
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